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ABSTRACT
Subjects with mild cognitive impairment (MCI) have a substantially
increased risk of developing dementia due to Alzheimer’s disease
(AD). Identifying MCI subjects who have high progression risk to AD
is important in clinical management. Existing risk prediction models
of AD among MCI subjects generally use either the AUC or Harrell’s
C-statistic to evaluate predictive accuracy. AUC is aimed at binary
outcome and Harrell’s C-statistic depends on the unknown
censoring distribution. G€onen and Heller’s K-index, also known as
concordance probability estimate (CPE), is another measure of
overall predictive accuracy for Cox proportional hazards (PH)
models, which does not depend on censoring distribution. As a
comprehensive example, using Alzheimer’s Disease Neuroimaging
Initiative (ADNI) data-set, we built a Cox PH model to predict the
conversion from MCI to AD where the prognostic accuracy was
evaluated using K-index.
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1. Introduction

Alzheimer’s disease (AD) is the most common cause of dementia. It is projected that the
number of Americans with AD will increase from 5.4 million in 2016 to 13.8 million in
2050 [1]. Subjects with mild cognitive impairment (MCI) have a substantially increased
risk of developing dementia due to AD. Several studies have suggested that patients with
MCI will convert to AD at an annual conversion rate of 10%–15% [2–4]. Early identifica-
tion of subjects with MCI who are at risk of progression to AD is of great clinical impor-
tance in delaying or preventing the transition from MCI to AD.

A major focus of MCI research has been to distinguish individuals who will progress to
AD from those who will not [5,6]. Several studies have developed prediction models for
MCI to AD conversion using positron emission tomography (PET) images [7, 8],

CONTACT Yongzhao Shao shaoy01@nyu.edu
*Data used in preparation of this article were obtained from the Alzheimer’s Disease Neuroimaging Initiative (ADNI) database
(adni.loni.usc.edu). As such, the investigators within the ADNI contributed to the design and implementation of ADNI and/or
provided data but did not participate in analysis or writing of this report. A complete listing of ADNI investigators can be
found at http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf

© 2017 International Biometric Society – Chinese Region

BIOSTATISTICS & EPIDEMIOLOGY, 2017
VOL. 1, NO. 1, 105–118
https://doi.org/10.1080/24709360.2017.1342187

http://crossmarksupport.crossref.org/?doi=10.1080/24709360.2017.1342187&domain=pdf
mailto:shaoy01@nyu.edu
http://adni.loni.usc.edu/wp-content/uploads/how_to_apply/ADNI_Acknowledgement_List.pdf
https://doi.org/10.1080/24709360.2017.1342187
http://www.tandfonline.com


magnetic resonance images (MRI) [9–12], cerebrospinal fluid (CSF) biomarkers [13,14],
or combining MRI and CSF measures [15,16]. Most of these studies employed logistic
regression or other classification methods to investigate AD progression at certain year
(e.g. 5-year or 10-year), where area under the receiver operating characteristic curve
(AUC) was used to evaluate overall predictive accuracy. Yet, AUC depends on the year
selected for evaluation. An overall evaluation of the predictive accuracy may be more
informative for time to AD conversion from MCI.

There are existing studies that focused on developing risk scores for AD progression
using Cox proportional hazards (PH) regression to accommodate time-to-progression
from MCI to AD, and the predictive accuracy of the risk scores were evaluated using
Harrell’s C-statistic [17–19]. It is known that the Harrell’s C-statistic approach has a
major drawback as it is generally biased and the magnitude of the bias depends on the
unknown censoring distribution even asymptotically [20,21]. Inverse probability-of-
censoring weighted (IPCW) C-statistic has been proposed by Uno et al. [21] and Liu, Jin
[22] to overcome the bias of the C-statistic. The IPCW C-statistic is consistent to C-index
when censoring is ‘noninformative’ (i.e. the random censoring time and AD-free survival
time are independent). However, this ‘noninformative censoring’ assumption is usually
not satisfied in practice as both random censoring time and AD-free survival time can
depend on certain covariates in many applications. Another approach to overcome the
dependence of the Harrell’s C-statistic on censoring distribution has been proposed by
G€onen and Heller [23], which is particularly useful when the widely used Cox PH model
is assumed.

In short, when the commonly used Cox PH models are suitable, K-index can be useful
to evaluate the overall predicative accuracy for risk prediction models of AD among MCI
subjects. The rest of this paper is organized as follows. In Section 2, we briefly review
Harrell’s C-statistic, the IPCW C-statistic and K-index. In Section 3, we report simulation
studies to compare the performance of these three methods for Cox PH models and pro-
vide more insights. In Section 4, we provide a comprehensive example, i.e. we develop an
AD risk prediction model among MCI subjects based on Cox PH model using Alzheimer’s
Disease Neuroimaging Initiative (ADNI) data-set. We evaluate the risk score performance
using K-index. The paper is concluded with discussion in Section 5.

2. Method

For a randomly selected individual, let T; D; and R denote event time, censoring time,
and risk score, respectively. We assume a high risk score generally corresponds to short
survival. Let ~T ¼ min T; Dð Þ denote the observed time and d ¼ I T <Dð Þ denote the
event indicator under right censoring. For a pair of randomly selected independent sub-
jects with T1;R1ð Þ and T2;R2ð Þ, the C-index can be denoted as

C ¼ P R1>R2 jT1<T2ð Þ;

and K-index can be defined as

K ¼ P T1 <T2 jR1 >R2ð Þ:
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C-index and K-index may take value ranging from 0.5 to 1. When K or C equals to 1,
R1>R2 implies T1<T2 with probability 1 and vice versa. When K or C equals to 0.5,
R1>R2 implies T1<T2 with probability 0.5 (i.e. similar to predicting an outcome via flip-
ping a fair coin) and vice versa.

In the special case where T and R are continuous variables (i.e. the probability of tied
observations can be ignored), and two randomly selected subjects with T1;R1ð Þ and
T2;R2ð Þ are independent and identically distributed (iid), we may have

P T1 <T2ð Þ ¼ P T1>T2ð Þ ¼ 1=2 and P R1 <R2ð Þ ¼ P R1>R2ð Þ ¼ 1=2:

Then, by the basic rule of conditional probability, we have

K ¼ P T1 <T2 jR1 >R2ð Þ ¼ P T1<T2; R1>R2ð Þ
P R1>R2ð Þ ¼ 2P T1<T2;R1 >R2ð Þ

¼ P T1 <T2; R1 >R2ð Þ
P T1 <T2ð Þ ¼ P R1>R2 jT1 <T2ð Þ ¼ C (1)

That is, the true value of K-index and C-index are equal under the above condition.
For independently observed data (~T i; di; RiÞ; i ¼ 1; . . . ; n, Harrell’s C-statistic [24]

is defined as

ĈH ¼
P

i 6¼jI ~T i < ~T j
� �

I Ri>Rj
� �

P
i 6¼jdiI ~T i< ~T j

� � (2)

Harrell’s C-statistic is known to be a biased estimator for C-index when there is censoring,
since it depends on censoring distribution [20,21]. Therefore, even for the same popula-
tion of subjects, when the censoring distributions differ in different studies, the values of
the Harrell’s C-statistics are not comparable. The Harrell’s C-statistic and its standard
error estimate can be directly obtained using the coxph() function from R package
survival.

To overcome the shortcoming of Harrell’s C-statistic, some new procedures have been
proposed. Notably, Uno et al. [21] and Liu, Jin [22] independently investigated the so-
called inverse-probability-of-censoring-weighted (IPCW) C-statistic. The IPCW C-statistic
is defined as

ĈW ¼
P

i 6¼jdi Ĝ ~T i
� �� ��2

I ~T i< ~T j
� �

I Ri>Rj
� �

P
i 6¼jdi Ĝ ~T i

� �� ��2
I ~Ti < ~T j
� � ; (3)

where Ĝ ∙ð Þ is the Kaplan–Meier estimator of the censoring distribution. These weighted
approaches are aimed at making the C-statistic independent of the underlying unknown cen-
soring distribution. However, the consistency of such weighted version of the C-statistic
ĈW depends on quite restrictive assumptions that event time T (i.e. the conversion time to
AD from MCI) is independent of censoring time D. Such assumptions are usually not
met in practice because the censoring time often depends on covariates that correlate to the
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survival endpoint. The IPCW C-statistic and its standard error estimate can be calculated
using survC1() function in R package survC1.

G€onen and Heller [23] proposed K-index as a measure of discriminatory power under
the commonly used Cox PH model. As is well known, the Cox PH models are among the
most widely used survival models and statistical tests for the PH assumptions have been
well developed. The Cox PH model can be written as

λ tjzð Þ ¼ λ0 tð Þexp bT
0 z

� �
; (4)

where λ tjzð Þ is the hazard function conditional on a p-dimensional covariate vector z,
λ0 tð Þ is the baseline hazard function independent of covariate, and b0 is the true regres-
sion parameter. The relationship between the covariate vector z and the survival time t is
determined through the survival function,

S t; z; bð Þ ¼ exp �exp bTz
� � Z t

0
λ0 uð Þdu

� �
(5)

The G€onen and Heller’s K-index is also known as concordance probability estimate
(CPE). Under Cox PH moels, the CPE is defined as

Kn b̂
� � ¼ 2

n n� 1ð Þ
X
i

X
< j

I b̂
T
zji < 0

� 	

1þ exp b̂
T
zji

� 	þ
I b̂

T
zij < 0

� 	

1þ exp b̂
T
zij

� 	
8<
:

9=
;; (6)

where zij is the pairwise difference zi � zj and b̂ is the partial likelihood estimator for b in
Cox PH models. G€onen and Heller also proposed a smooth version of the K-index, and
more details can be found in [23]. K-index is a function of the estimated regression
parameter in Cox PH models, and therefore it is asymptotically consistent. Thus, even for
finite sample, K-index is generally not sensitive to censoring distribution. The K-index
and its standard error estimate can be estimated using the phcpe()function from the R
package CPE by directly inputting the coxph object from coxph() function in argument
coxfit and setting argument CPE.SE = TRUE. Another function phcpe2()in R pack-
age CPE allows to estimate K-index and the standard error by inputting the coefficients
and covariance matrix of the coefficients from the fitted Cox PH model and a design
matrix for covariates. Since K-index is suitable for Cox PH models, it is important to test
the validity of the PH assumption. The PH assumption can be checked with scaled
Schoenfeld residuals for each parameter using the cox.zph()function in the R package
survival. All analyses in this paper were done using R v3.2.2.

3. Simulation studies

To provide insights on the behaviours of the three concordance indices under Cox PH
models, we conducted extensive simulation studies to investigate their variability across
different censoring proportions ranging from 0% to 80%. We consider non-informative
random right censoring, that is the censoring, time is independent of the time-to-event.
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This is a strong assumption, however, even under this restrictive assumption the Harrell’s
C-statistic and its weighted versions using inverse probabilities are still quite sensitive to
the censoring distribution, which is unknown in practical applications. Following the Cox
PH model in Equation (4), the covariate vector was z ¼ Z1; Z2ð Þ, where Z1 and Z2 were
independently generated from Normal (0, 1) and Bernoulli (0.5), respectively. The corre-
sponding log(HR) was b ¼ b1; b2ð Þ, where b1 ¼ 1 and b2 ¼ �1. We assumed the base-
line hazard function follows an exponential distribution with a constant hazard rate
λ0 tð Þ ¼ 1. Given covariates, the event time T was generated from exponential distribution
(λ) with parameter λ ¼ exp b1Z1 þ b2Z2ð Þ. In our simulations, censoring time D was
independent of T and generated from Uniform [0, t], where t were chosen to achieve the
desired censoring proportion ranging from 0% to 80%.

Under the above set up, we obtained iid copies of ð~T ; d; zÞ, where ~T ¼ min T; Dð Þ
and d ¼ I T <Dð Þ. The corresponding risk score is R ¼ b1 Z1 þ b2Z2. By the iid assump-
tion and the fact that T and R are continuous variables (thus the probability of tied obser-
vations is negligible), for a pair of randomly selected individuals with bivariate T1;R1ð Þ
and T2;R2ð Þ, Equation 1ð Þ holds, i.e. the true value of K-index and C-index are equal. In
our simulation set up, the true value is K-index = C-index = 0.744. It is well known that
the G€onen and Heller’s K-index is a consistent estimator of the true K regardless of cen-
soring proportion under the Cox PH models, and Harrell’s C-statistic is consistent esti-
mate of the true value only in the absence of censoring. Theoretically, under the non-
informative censoring assumption, the IPCW C-statistic can consistently estimate the
true C-index value, but its finite sample performance in comparison with K-index and
Harrell’s C-statistic has not been systematically investigated and reported. The aim of this
simulation study is to investigate the relative stability of the K-index and relative instabil-
ity of Harrell’s C-statistic, IPCW C-statistic. We computed the Harrell’s C-statistic, IPCW
C-statistic and K-index using the R functions mentioned in the method section. We used
various sample size ranging from n = 200 to n = 400. The key results and observed pat-
terns were not sensitive to sample size and therefore we only reported results for n = 200
and n = 400 in the following.

As shown in Figure 1, in the absence of censoring, the three estimators all performed
well as expected. For sample size n = 200, as censoring proportion increased, the Harrell’s
C-statistic increased noticeably which reflected its increased biases. The IPCW C-statistic
remained stable for relative light censoring, but it started to increase when censoring
became heavier. On the other hand, K-index remained stable when the censoring propor-
tion was as high as 80%. When sample size increased to n = 400, the behaviour and bias of
Harrell’s C-statistic and IPCW C-statistic did not improve. More numerical details can be
found in Table 1.

4. Application to the ADNI data

The data source of this article was the Alzheimer’s Disease Neuroimaging Initiative data-
base (https://ida.loni.usc.edu/). ADNI was launched in 2003 by the National Institute on
Aging (NIA), the National Institute of Biomedical Imaging and Bioengineering (NIBIB),
the Food and Drug Administration (FDA), private pharmaceutical companies, and non-
profit organizations, as a $60 million, five-year public-private partnership. The principal
investigator of the initiative is Michael W. Weiner, M.D., VA medical Center and
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University of California-San Francisco. ADNI is the result of efforts of many co-investiga-
tors from a broad range of academic institutions as well as private corporations. The study
subjects have been recruited from over 50 sites across the USA and Canada. The initial
goal of ADNI was to recruit 800 subjects and ADNI has been followed by ADNI-GO and
ADNI-2. To date these three protocols have recruited over 1500 adults, ages 55 to 90, to
participate in the research, consisting of cognitively normal (NL) older individuals, indi-
viduals with MCI, and individual with AD. The follow up duration of each group is speci-
fied in the protocols for ADNI-1, ADNI-2 and ADNI-GO. Subjects originally recruited
for ADNI-1 and ADNI-GO had the option to be followed in ADNI-2. Up-to-date infor-
mation can be found at http://www.adni-info.org/.

In this real data example, we only consider subjects with baseline diagnosis as MCI.
The diagnosis results were downloaded from ADNI website on April 28, 2016. We focus

Figure 1. Estimated concordance indices Harrell’s C-statistic, IPCW C-statistic and K-index for Cox PH
model under different censoring proportions with 1000 simulation replicates. The solid curves are the
mean of 1000 simulation replicated for each of the estimated concordance indices. The dash line is the
true value 0.744.
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on late onset AD, thus individuals with age at AD onset younger than 60 years (indicative
of possible familial AD) were excluded. Clinical data from only non-Hispanic Caucasian
subjects were used in this investigation. Conversion was defined as incident Alzheimer’s
disease and time to conversion was measured in years.

Table 2 summarizes the baseline characteristics of the ADNI cohort. The baseline age is
significantly greater in converters than non-converters, while there is no significant differ-
ence in years of education. Converters have a higher percentage of APOE e4 carriers. Neu-
rological disorder other than AD is significantly higher among non-converters. All the
neuropsychological test scores are significantly different between converters and non-con-
verters, except for Geriatric Depression Scale.

Table 3 summarizes Pearson correlation among neuropsychological test scores. Several
pairs of neuropsychological test are highly correlated. Apolipoprotein E (APOE) e4 vari-
ant has been confirmed as a risk factor for AD [25,26]. Age, gender, education and medi-
cal history have been reported to be associated with the risk of AD in other studies
[17,19,27]. We used Adaptive Lasso to select variables [29]. The candidate variables for
Adaptive Lasso [28,29] selection include age, gender, education, APOE allele, medical his-
tory and neuropsychological test performance. As commonly used in applying Adaptive
Lasso, ridge regression was used to obtain an initial b̂ ridgeð Þ to construct the adaptive
weights vector, and then we applied the adaptive weights vector on the cv.glmnet()
function using the argument penalty.factor. We used 10-fold cross validation to
find the optimal shrinkage factor λ, which is the largest value of λ within one standard
error of the minimum of the partial likelihood deviance. The variables selected by Adap-
tive Lasso include APOE e4, neurological disorder other than AD, cognitive dementia rat-
ing scale sum of boxes (CDR-SB), Alzheimer’s Disease Assessment Scale cognitive
subscale (ADAS-cog) 13 items, mini-mental state examination score (MMSE), and

Table 1. Simulation study. Under the Cox PH model in Equation (5), the covariate was z ¼ Z1; Z2ð Þ,
where Z1 and Z2 were independently generated from Normal (0, 1) and Bernoulli (0.5), respectively.
The corresponding log(HR) was b ¼ b1;b2ð Þ, where b1 ¼ 1 and b2 ¼ �1. We assumed the
baseline hazard function has a constant hazard rate λ0 tð Þ ¼ 1. Thus, given covariates, the event time T
was generated from exponential distribution (λ) with parameter λ ¼ exp b1Z1 þ b2Z2ð Þ. Censoring
time D was independent of T and was generated from Uniform [0, t], where t were chosen to achieve
the desired censoring proportion ranging from 0% to 80%.
Sample
size

Censoring
proportion

Harrell’s
C

Harrell’s C
simulation SE

IPCW
C

IPCW C
simulation SE

K-
index

K-index
simulation SE

n = 200 80% 0.773 0.039 0.766 0.045 0.746 0.027
70% 0.766 0.031 0.758 0.035 0.745 0.023
60% 0.761 0.027 0.752 0.028 0.744 0.020
50% 0.757 0.024 0.748 0.024 0.744 0.019
40% 0.754 0.023 0.747 0.022 0.744 0.018
30% 0.750 0.021 0.745 0.020 0.744 0.017
20% 0.748 0.020 0.744 0.019 0.744 0.017
0% 0.744 0.018 0.744 0.018 0.744 0.016

n = 400 80% 0.771 0.028 0.765 0.033 0.744 0.019
70% 0.766 0.022 0.757 0.026 0.745 0.016
60% 0.761 0.019 0.752 0.021 0.744 0.014
50% 0.757 0.017 0.749 0.017 0.744 0.013
40% 0.754 0.016 0.747 0.015 0.744 0.013
30% 0.751 0.015 0.745 0.014 0.744 0.012
20% 0.748 0.014 0.744 0.013 0.744 0.011
0% 0.744 0.013 0.744 0.013 0.744 0.011
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Functional Activities Questionnaire (FAQ). We then developed a multivariable Cox pro-
portional hazards regression to model the time to AD conversion among MCI patients.

Table 4 summarizes the predictors and corresponding hazard ratios for the final Cox
PH model. APOE e4 allele is the strongest predictor (HR = 1.58, p-value < 0.001). All the
other predictors have significant influence on the hazard ratio for AD (neurological disor-
der other than AD: HR = 0.638, p-value = 0.001, CDR-SB: HR = 1.503, p-value < 0.001;
ADAS-cog 13 items: HR = 1.121, p-value < 0.001; MMSE: HR = 0.908, p-value = 0.01;
FAQ: HR = 1.086, p-value < 0.001). It is important to verify the proportional hazards
assumption when using Cox PH models. Table 5 summarizes the test results for PH
assumption for the fitted Cox PH model. We confirm that there is no strong evidence to

Table 2. Summary of characteristics at baseline.

Characteristic
Non-converters

n = 457
Converters
n = 275 p-value

Male, No. (%) 274 (60) 170 (61.8) 0.674
Age, mean (sd), y 72.69 (7.75) 74.56 (6.35) <0.001
Education, mean (sd), y 16.02 (2.84) 15.85 (2.79) 0.41
APOE e4, No. (%) <0.001
0 266 (58.2) 89 (32.4)
1 153 (33.5) 139 (50.5)
2 38 (8.3) 47 (17.1)
Medical history, No. (%)
Psychiatric 181 (39.6) 103 (37.5) 0.617
Neurological disorder (other than AD) 170 (37.2) 78 (28.4) 0.018
Alcohol abuse 17 (3.7) 12 (4.4) 0.813
Drug abuse 4 (0.9) 1 (0.4) 0.655
Smoking 182 (39.8) 108 (39.3) 0.944
Malignancy 108 (23.6) 64 (23.3) 0.983
Neuropsychological test, mean (sd)
GDS� 1.63 (1.41) 1.69 (1.43) 0.627
CDR-SB 1.27 (0.73) 1.88 (0.92) <0.001
ADAS-cog 11 items 8.82 (3.86) 12.8 (4.41) <0.001
ADAS-cog 13 items 14.17 (5.86) 20.73 (6.08) <0.001
MMSE 28.01 (1.7) 27.04 (1.76) <0.001
RAVLT immediate 37.34 (10.88) 29.08 (7.98) <0.001
RAVLT learning 4.67 (2.51) 3.16 (2.46) <0.001
RAVLT forgetting 4.48 (2.54) 4.93 (2.26) 0.013
RAVLT %forgetting 52.96 (31.21) 73.92 (29.6) <0.001
FAQ 1.95 (3.08) 5.27 (4.68) <0.001

Note: Abbreviations: sd, standard deviation; GDS, Geriatric Depression Scale; CDR-SB, cognitive dementia rating scale
sum of boxes; ADAS, Alzheimer’s Disease Assessment Scale; MMSE, mini-mental state examination score; RAVLT, Rey
Auditory Verbal Learning Test; FAQ, Functional Activities Questionnaire.

�GDS was measured during screen visit.

Table 3. Pearson correlation between neuropsychological test scores.

GDS CDR-SB
ADAS-cog
11 items

ADAS-cog
13 items MMSE

RAVLT
immediate

RAVLT
learning

RAVLT
forgetting

RAVLT %
forgetting FAQ

GDS 1 0.09 0 0 0.03 0 0.02 ¡0.01 ¡0.02 0.09
CDR-SB 1 0.26 0.29 ¡0.19 ¡0.22 ¡0.16 0.06 0.21 0.55
ADAS-cog 11 items 1 0.95 ¡0.4 ¡0.61 ¡0.46 0.13 0.45 0.3
ADAS-cog 13 items 1 ¡0.45 ¡0.67 ¡0.53 0.18 0.53 0.33
MMSE 1 0.39 0.32 ¡0.03 ¡0.28 ¡0.16
RAVLT immediate 1 0.6 ¡0.12 ¡0.59 ¡0.27
RAVLT learning 1 0.03 ¡0.47 ¡0.26
RAVLT forgetting 1 0.77 0.09
RAVLT % forgetting 1 0.26
FAQ 1
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reject the null hypothesis of a correlation coefficient rho = 0 for any parameter in the
model with time. Furthermore, the p-value for the global chi-square test for PH assump-
tion is 0.496. With the relatively small number of baseline predictors in the Cox PH
model, the prognostic accuracy of the model is very good with a K-index 0.77 (95% CI
0.75–0.79). Using training and evaluation sets by random splitting the data-set yields sim-
ilar results, e.g. using 90% data to develop the Cox PH model and the remaining 10% as
evaluation set, based on 1000 replications, the estimated K-index has mean 0.77 with stan-
dard error 0.01. On the other hand, the Harrell’s C-statistic is 0.84 (95% CI 0.80– 0.87).
The inflated C-statistic value under heavy censoring is in agreement with our simulation
results presented in Figure 1, and also similar to the real data example presented in G€onen
and Heller [23].

5. Discussion

Several risk prediction tools have been developed to predict the conversion from MCI to
AD recently. Many of them utilized MRI image, PET image, CSF biomarkers, or a combi-
nation of them in the prediction model [7–16]. Most of these studies employed logistic
regression or other classification methods and used AUC to evaluate predictive accuracy
at a certain year after MCI. Yet, MCI to AD conversion is a time to event data, and an
overall evaluation of the predictive accuracy is of interest and may be more informative.
Some of the biomarkers and radiographic imaging evidence can be quite expensive and
often invasive. A few studies have developed non-invasive risk scores for AD progression
using Cox PH regression, and the accuracy was evaluated using Harrell’s C statistic [17–
19]. It is well known Harrell’s C statistic depends on the unknown censoring distribution,
which diminishes its interpretability and practical utility. On the other hand, Cox PH
models are widely applicable, and G€onen and Heller’s K-index can be used when Cox PH
assumption is satisfied.

Table 4. Multivariate Cox proportional hazard model for conversion from
MCI to AD.
Variable HR (95% CI) p-value

APOE e4 1.58 (1.33, 1.877) <0.001
Neurological disorder (other than AD) 0.638 (0.487, 0.835) 0.001
CDR-SB 1.503 (1.291, 1.748) <0.001
ADAS-cog 13 1.121 (1.098, 1.145) <0.001
MMSE 0.908 (0.842, 0.979) 0.011
FAQ 1.086 (1.056, 1.117) <0.001

Table 5. Test results of the proportional hazards assumption for the fitted
multivariable Cox regression model.
Variable rho p-value

APOE e4 0.112 0.063
Neurological disorder other than AD 0.08 0.188
CDR-SB ¡0.028 0.656
ADAS-cog 13 ¡0.017 0.788
MMSE ¡0.031 0.606
FAQ 0.001 0.992
GLOBAL 0.496
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As a semi-parametric method, Cox PH model can be fitted without estimating the

baseline hazard function. The coefficients fitted by Cox PH model (i.e. b̂ Þ reflect relative
risks. Based on such estimated coefficients from the fitted Cox PH model, we can estimate
concordance probabilities as overall measures of discriminative power. On the other
hand, to obtain the absolute risk using Cox PH models, we would need to estimate the
baseline hazard function. In general, the baseline hazard functions cannot be consistently
estimated in outcome dependent sampling studies or non-prospective studies. ADNI is an
outcome-dependent sampling study, and thus the baseline hazard function may not be
reliable estimated. If survival data based on well-designed prospective studies is available,
the baseline hazard function λ0 tð Þ and baseline cumulative hazard function L0 tð Þ can be
estimated using basehaz() function in R package survival. When a new MCI
patient comes in with relevant covariates in the Cox PH model, we can use the fitted Cox

PH model to estimate the hazard function λ ðtjz; b̂; λ̂0 tð ÞÞ ¼ λ̂0 tð Þexp ðb̂T
zÞ. The cumu-

lative hazard function L ðtjz; ^b; λ̂0 tð ÞÞ ¼ L̂0 tð Þexp ðb̂T
zÞ can then be estimated by inte-

grating λ ðtjz; ^b; λ̂0 tð ÞÞ ¼ λ̂0 tð Þexp ðb̂T
zÞ. Then one can estimate the probability from

MCI to conversion to AD at time t by

S ðtjz; ^b; λ̂0 tð ÞÞ ¼ exp ½�Lðtjz; ^b; λ̂0 tð ÞÞ� ¼ exp ½�L̂0 tð Þexp ðb̂T
zÞ�:

Although b is a vector of finite dimension and easy to estimate, the baseline hazard
function λ0 tð Þ generally has infinite dimension. Thus, a relative large sample size is
required to obtain a reliable estimate of λ0 tð Þ. In addition, careful model calibration is usu-
ally required.

K-index for Cox PH models is analogous to the area under the ROC curve (AUC)
for logistic regression to classify a binary outcome such as disease and no disease.
The AUC for logistic regression can be obtained using either retrospective case-
control data or prospective data. On the other hand, the positive predictive value
and negative predictive value depend on disease prevalence in the underlying study
population which cannot be consistently estimated based only on retrospective case-
control data. While absolute risk is useful, it is quite expensive to estimate, and in
many applications, we do not necessarily need to know the absolute risk for patients.
The relative risks estimated from Cox PH model have been widely used in clinical
study design and decision making. For example, the relative risk score (i.e. b̂

T
z)

obtained from Cox PH model can be useful to select a subgroup of MCI patients with
high risk of conversion to AD into clinical trials.

Unlike the Harrell’s C-statistic, K-index is robust to the unknown censoring distri-
bution. K-index also has simple closed-form formula thus easy to compute. More-
over, it is straightforward to compare two risk score systems by comparing the
corresponding K-indices. In particular, one can calculated the difference of the two
K-indices with bootstrapped confidence intervals [30]. These confidence intervals are
easy to obtain and straightforward for interpretation. In contrast, the difference of
two C-statistics can be shown to depend on the unknown censoring distribution in
general [21,31], and thus it does not have much practical utility. As discussed by
G€onen and Heller [23], K-index can be viewed as an extension of the AUC for
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binary outcome to censored time-to-event outcome under Cox PH models. When
proportional odds (PO) models and other transformational models are more suited
than Cox PH models for the data-set, extended K-index in Zhang and Shao [30]
might be used in similar fashion to evaluate predictive accuracy of related models
for disease progression.

Although we have shown some advantages of K-index compared to Harrell’s C-statistic
and IPCW C-statistic, the K-index also has some limitations. First, it is suitable only
under Cox PH models. If the PH assumption is not satisfied, K-index may give misleading
estimates. Second, the K-index itself does not reflect absolute risk. Another limitation of
our study is that it is possible that other cohort does not have the neuropsychological tests
we selected using the ADNI data. Another model may have to be established using other
available test scores in similar manner and K-index can be used to measure the overall dis-
criminative power. Nevertheless, our results indicate that the more easily available cogni-
tive tests instead of more expensive (and possibly invasive) biomarkers can have great
potential to facilitate the selection of the ‘right’MCI population for future clinical trials.

To sum up, we suggest using K-index to evaluate overall predictive accuracy when
PH assumption is satisfied. As a comprehensive example, we developed a risk score to
predict the progression from MCI to AD using a Cox PH model, and applied K-index
to evaluate the fitted Cox PH model after confirmed the PH assumption was satisfied.
One major strength of this risk score is the simplicity. It only includes six simple
items, i.e. APOE e4 allele, medical history-neurological disorder other than AD, cogni-
tive dementia rating scale sum of boxes (CDR-SB), Alzheimer’s Disease Assessment
Scale cognitive subscale (ADAS-Cog) 13 items, mini-mental state examination score
(MMSE), and Functional Activities Questionnaire (FAQ). In addition, this risk score
is cost-effective. APOE e4 allele, medical history and neuropsychological test perfor-
mance are relative easy to gather, compared to the more expensive MRI scan, PET
scan, as well as CSF biomarkers which requires invasive lumbar puncture. Interest-
ingly, the accuracy of this risk score was very good with a K-index 0.77. Our results
highlight the important role of neuropsychological tests in terms of prediction of
Alzheimer’s disease risk for MCI patients.
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